资源类型

期刊论文 1923

会议视频 65

会议信息 2

会议专题 1

年份

2024 4

2023 164

2022 203

2021 193

2020 174

2019 151

2018 118

2017 120

2016 79

2015 103

2014 62

2013 60

2012 40

2011 52

2010 53

2009 58

2008 60

2007 72

2006 48

2005 35

展开 ︾

关键词

机器学习 10

遗传算法 9

优化 7

医学 7

神经网络 7

能源 7

高分子材料 7

可持续发展 5

预测 5

固体氧化物燃料电池 4

多目标优化 4

智能制造 4

材料 4

材料设计 4

目标识别 4

碳中和 4

4D打印 3

BP神经网络 3

COVID-19 3

展开 ︾

检索范围:

排序: 展示方式:

Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals

Zhiyong Wang, Yuan Pu, Dan Wang, Jie-Xin Wang, Jian-Feng Chen

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 855-866 doi: 10.1007/s11705-018-1722-y

摘要: With the development of carbon catalysts, graphene-based metal-free catalysts have drawn increasing attention in both scientific research and in industrial chemical production processes. In recent years, the catalytic activities of metal-free catalysts have significantly improved and they have become promising alternatives to traditional metal-based catalysts. The use of metal-free catalysts greatly improves the sustainability of chemical processes. In view of this, the recent progress in the preparation of graphene-based metal-free catalysts along with their applications in catalytic oxidation, reduction and coupling reactions are summarized in this review. The future trends and challenges for the design of graphene-based materials for industrial organic catalytic reactions with good stabilities and high catalytic performance are also discussed.

关键词: graphene-based materials     metal-free catalyst     industrial chemical productions     catalytic reaction    

Newly-modeled graphene-based ternary nanocomposite for the magnetophotocatalytic reduction of CO2 with

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1438-1459 doi: 10.1007/s11705-022-2166-y

摘要: The development of CO2 into hydrocarbon fuels has emerged as a green method that could help mitigate global warning. The novel structured photocatalyst is a promising material for use in a photocatalytic and magneto-electrochemical method that fosters the reduction of CO2 by suppressing the recombination of electron−hole pairs and effectively transferring the electrons to the surface for the chemical reaction of CO2 reduction. In our study, we have developed a novel-structured AgCuZnS2–graphene–TiO2 to analyze its catalytic activity toward the selective evolution of CO2. The selectivity of each nanocomposite substantially enhanced the activity of the AgCuZnS2–graphene–TiO2 ternary nanocomposite due to the successful interaction, and the selectivity of the final product was improved to a value 3 times higher than that of the pure AgCuZnS2 and 2 times higher than those of AgCuZnS2–graphene and AgCuZnS2–TiO2 under ultra-violet (UV)-light (λ = 254 nm) irradiation in the photocatalytic process. The electrochemical CO2 reduction test was also conducted to analyze the efficacy of the AgCuZnS2–graphene–TiO2 when used as a working electrode in laboratory electrochemical cells. The electrochemical process was conducted under different experimental conditions, such as various scan rates (mV·s–1), under UV-light and with a 0.07 T magnetic-core. The evolution of CO2 substantially improved under UV-light (λ = 254 nm) and with 0.07 T magnetic-core treatment; these improvements were attributed to the facts that the UV-light activated the electron-transfer pathway and the magnetic core controlled the pathway of electron-transmission/prevention to protect it from chaotic electron movement. Among all tested nanocomposites, AgCuZnS2–graphene–TiO2 absorbed the CO2 most strongly and showed the best ability to transfer the electron to reduce the CO2 to methanol. We believe that our newly-modeled ternary nanocomposite opens up new opportunities for the evolution of CO2 to methanol through an electrochemical and photocatalytic process.

关键词: ternary nanocomposite     photocatalytic     electrochemical CO2 reduction     UV-light     magnetic core    

硅基石墨烯调制器 Special Feature on Optoelectronic Devices and Inte

Hao-wen SHU, Ming JIN, Yuan-sheng TAO, Xing-jun WANG

《信息与电子工程前沿(英文)》 2019年 第20卷 第4期   页码 458-471 doi: 10.1631/FITEE.1800407

摘要: 为满足下一代光互联技术高带宽、低功耗的需求,基于金属互补氧化物半导体(CMOS)工艺的硅基光电子技术有望实现光电器件大规模、高密度集成,在高速率数据传输方面带来新突破。硅基调制器是硅基光电子学的核心器件之一,然而传统基于等离子色散效应的硅基耗尽式调制器在带宽、尺寸和功耗方面存在一定限制,影响传输系统整体性能。为解决该问题,石墨烯被引入硅基光电子器件的材料体系,其优异的电学传输特性和光电特性有效提升传统硅基光调制器单元器件性能。我们总结了基于热光、电光、等离子体等硅基石墨烯调制器的最新进展,其出色性能使硅基石墨烯调制器有望成为下一代片上及片外光互连技术的候选方案。

关键词: 硅基光电子学;石墨烯;光调制器    

Carbon-based materials for photodynamic therapy: A mini-review

Di Lu, Ran Tao, Zheng Wang

《化学科学与工程前沿(英文)》 2019年 第13卷 第2期   页码 310-323 doi: 10.1007/s11705-018-1750-7

摘要: Carbon-based materials have been extensively applied in photodynamic therapy owing to the unique optical characteristics, good biocompatibility and tunable systematic toxicity. This mini-review mainly focuses on the recent application of carbon-based materials including graphene, carbon nanotube, fullerene, corannulene, carbon dot and mesoporous carbon nanoparticle. The carbon-based materials can perform not only as photosensitizers, but also effective carriers for photosensitizers in photodynamic therapy, and its combined treatment.

关键词: photodynamic therapy     carbon-based materials     graphene     carbon nanotube     fullerene     corannulene     carbon dot     mesoporous carbon nanoparticle    

Effect of graphene and its derivatives on thermo-mechanical properties of phase change materials and

《能源前沿(英文)》 2022年 第16卷 第2期   页码 150-186 doi: 10.1007/s11708-021-0795-3

摘要: Phase change materials (PCMs) play a leading role in overcoming the growing need of advanced thermal management for the storage and release of thermal energy which is to be used for different solar applications. However, the effectiveness of PCMs is greatly affected by their poor thermal conductivity. Therefore, in the present review the progress made in deploying the graphene (Gr) in PCMs in the last decade for providing the solution to the aforementioned inadequacy is presented and discussed in detail. Gr and its derivatives ((Gr oxide (GO), Gr aerogel (GA) and Gr nanoplatelets (GNPs)) based PCMs can improve the thermal conductivity and shape stability, which may be attributed to the extra ordinary thermo-physical properties of Gr. Moreover, it is expected from this review that the advantages and disadvantages of using Gr nanoparticles provide a deep insight and help the researchers in finding out the exact basic properties and finally the applications of Gr can be enhanced.

关键词: phase change materials (PCMs)     graphene     thermal conductivity     characterization    

Multi-effect anthraquinone-based polyimide enclosed SnO/reduced graphene oxide composite as high-performance

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1231-1243 doi: 10.1007/s11705-023-2306-z

摘要: The cycling stability of SnO2 anode as lithium-ion battery is poor due to volume expansion. Polyimide coatings can effectively confine the expansion of SnO2. However, linear polyimides are easily dissolved in ester electrolytes and their carbonyls is not fully utilized during charging/discharging process. Herein, the SnO2 enclosed with anthraquinone-based polyimide/reduced graphene oxide composite was prepared by self-assembly. Carbonyls from the anthraquinone unit provide fully available active sites to react with Li+, improving the utilization of carbonyl in the polyimide. More exposed carbonyl active sites promote the conversion of Sn to SnO2 with electrode gradual activation, leading to an increase in reversible capacity during the charge/discharge cycle. In addition, the introduction of reduced graphene oxide cannot only improve the stability of polyimide in the electrolyte, but also build fast ion and electron transport channels for composite electrodes. Due to the multiple effects of anthraquinone-based polyimide and the synergistic effect of reducing graphene oxide, the composite anode exhibits a maximum reversible capacity of 1266 mAh·g−1 at 0.25 A·g−1, and maintains an excellent specific capacity of 983 mAh·g−1 after 200 cycles. This work provides a new strategy for the synergistic modification of SnO2.

关键词: anthraquinone-based polyimide     multi-effect     tin dioxide     reduced graphene oxide     lithium-ion battery    

Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1572-1582 doi: 10.1007/s11705-021-2112-4

摘要: High density and uniform distribution of the gold nanoparticles functionalized single-stranded DNA modified reduced graphene oxide nanocomposites were obtained by non-covalent interaction. The positive gold nanoparticles prepared by phase inversion method exhibited good dimensional homogeneity and dispersibility, which could readily combine with single-stranded DNA modified reduced graphene oxide nanocomposites by electrostatic interactions. The modification of single-stranded DNA endowed the reduced graphene oxide with favorable biocompatibility and provided the preferable surface with negative charge for further assembling of gold nanoparticles to obtain gold nanoparticles/single-stranded DNA modified reduced graphene oxide nanocomposites with better conductivity, larger specific surface area, biocompatibility and electrocatalytic characteristics. The as-prepared nanocomposites were applied as substrates for the construction of cholesterol oxidase modified electrode and well realized the direct electron transfer between the enzyme and electrode. The modified gold nanoparticles could further catalyze the products of cholesterol oxidation catalyzed by cholesterol oxidase, which was beneficial to the enzyme-catalyzed reaction. The as-fabricated bioelectrode exhibited excellent electrocatalytic performance for the cholesterol with a linear range of 7.5‒280.5 μmol·L‒1, a low detection limit of 2.1 μmol·L‒1, good stability and reproducibility. Moreover, the electrochemical biosensor showed good selectivity and acceptable accuracy for the detection of cholesterol in human serum samples.

关键词: reduced graphene oxide     gold nanoparticles     electrochemical biosensor     cholesterol oxidase     cholesterol    

Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode

Krishnaveni Kalaiappan, Subadevi Rengapillai, Sivakumar Marimuthu, Raja Murugan, Premkumar Thiru

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 976-987 doi: 10.1007/s11705-019-1897-x

摘要: Hierarchically-porous carbon nano sheets were prepared as a conductive additive for sulfur/polyacrylonitrile (S/PAN) composite cathodes using a simple heat treatment. In this study, kombucha (that was derived from symbiotic culture of bacteria and yeast) carbon (KC) and graphene oxide (GO) were used as a carbon host matrix. These rational-designed S/PAN/KC/GO hybrid composites greatly suppress the diffusion of polysulfides by providing strong physical and chemical adsorption. The cathode delivered an initial discharge capacity of 1652 mAh·g at a 0.1 C rate and a 100 cycle capacity of 1193 mAh·g . The nano sheets with embedded hierarchical pores create a conductive network that provide effective electron transfer and fast electrochemical kinetics. Further, the nitrogen component of PAN can raise the affinity/interaction of the carbon host with lithium polysulfides, supporting the cyclic performance. The results exploit the cumulative contribution of both the conductive carbon matrix and PAN in the enhanced performance of the positive electrode.

关键词: sulfur cathode     kombucha SCOBY     graphene oxide     polyacrylonitrile     lithium-sulfur battery    

growth of NiSe nanocrystalline array on graphene for efficient hydrogen evolution reaction

Shuai JI, Changgan LAI, Huan ZHOU, Helin WANG, Ling MA, Cong WANG, Keying ZHANG, Fajun LI, Lixu LEI

《能源前沿(英文)》 2022年 第16卷 第4期   页码 595-600 doi: 10.1007/s11708-022-0827-7

摘要: Nickel selenide electrocatalysts for hydrogen evolution reaction (HER) with a high efficiency and a low-cost have a significant potential in the development of water splitting. However, the inferiority of the high overpotential and poor stability restricts their practical applications. Herein, a composite nanostructure consists of ultrasmall NiSe2 nanocrystals embedded on graphene by microwave reaction is reported. The prepared NiSe2/reduced graphite oxide (rGO) electrocatalyst exhibited a high HER activity with an overpotential of 158 mV at a current density of 10 mA/cm2 and a corresponding moderate Tafel slope of 56 mV/dec in alkaline electrolyte. In addition, a high retention of electrochemical properties (approximately 100%) was demonstrated with an unchangeable microstructure after 100 h of continuous operation.

关键词: nickel selenide     carbon materials     nanoparticles     hydrogen evolution reaction (HER)     microwave reaction    

Role of oxygen vacancy inducer for graphene in graphene-containing anodes

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 326-333 doi: 10.1007/s11705-022-2213-8

摘要: Currently, graphene is only considered as a conductive additive and expansion inhibitor in oxides/graphene composite anodes. In this study, a new graphene role (oxygen vacancy inducer) in graphene/oxides composites anodes, which are treated at high-temperature, is proposed and verified using experiments and density functional theory calculations. During high-temperature processing, graphene forms carbon vacancies due to increased thermal vibration, and the carbon vacancies capture oxygen atoms, facilitating the formation of oxygen vacancies in oxides. Moreover, the induced oxygen vacancy concentrations can be regulated by sintering temperatures, and the behavior is unaffected by oxide crystal structures (crystalline and amorphous) and morphology (size and shape). According to density functional theory calculations and electrochemical measurements, the oxygen vacancies enhance the lithium-ion storage performance. The findings can result in a better understanding of graphene’s roles in graphene/oxide composite anodes, and provide a new method for designing high-performance oxide anodes.

关键词: oxide     oxygen vacancy     graphene     anode     density functional theory calculation    

Microbial self-healing of cracks in cement-based materials and its influencing factors

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0986-6

摘要: Cement-based materials are brittle and crack easily under natural conditions. Cracks can reduce service life because the transport of harmful substances can cause corrosion damage to the structures. This review discusses the feasibility of using microbial self-healing agents for crack healing. Tubular and spherical carriers can be used to load microbial self-healing agents and protect microbes, which prolongs the self-healing time. The area self-healing ratio, permeability, mechanical strength, precipitation depth method, numerical modeling, and ultrasonic method can be employed to identify the self-healing effect of cracks. Moreover, the self-healing mechanism is systematically analyzed. The results showed that microbial self-healing agents can repair cracks in cement-based materials in underground projects and dam gates. The difficulties and future development of self-healing cracks were analyzed. A microbial self-healing agent was embedded in the cement-based material, which automatically repaired the developing cracks. With the development of intelligent building materials, self-healing cracks have become the focus of attention.

关键词: cement-based materials     cracks     microbial self-healing agent     mechanism     intelligent building materials    

Ammonia adsorption on graphene and graphene oxide: a first-principles study

Yue PENG, Junhua LI

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 403-411 doi: 10.1007/s11783-013-0491-6

摘要: Motivated by the recent realization of graphene sensor to detect gas molecules that are harmful to the environment, the ammonia adsorption on graphene or graphene oxide (GO) was investigated using first-principles calculation. The optimal adsorption and orientation of the NH molecules on the graphene surfaces were determined, and the adsorption energies ( ) as well as the Mulliken charge transfers of NH were calculated. The for the graphene are small and seem to be independent of the sites and orientations. The surface epoxy or hydroxyl groups can promote the adsorption of NH on the GO; the enhancement of the for the hydroxyl groups is greater than that for the epoxy groups on the surface. The charge transfers from the molecule to the surfaces also exhibit the same trend. The Br?nsted acid sites and Lewis acid sites could stably exist on the GO with surface hydroxyl groups and on the basal, respectively.

关键词: graphene oxide     first-principles calculations     NH3 adsorption    

Mapping the trends and prospects of battery cathode materials based on patent landscape

《能源前沿(英文)》   页码 822-832 doi: 10.1007/s11708-023-0900-x

摘要: Advancing portable electronics and electric vehicles is heavily dependent on the cutting-edge lithium-ion (Li-ion) battery technology, which is closely linked to the properties of cathode materials. Identifying trends and prospects of cathode materials based on patent analysis is considered a kernel to optimize and refine battery related markets. In this paper, a patent analysis is performed on 6 popular cathode materials by comprehensively considering performance comparison, development trend, annual installed capacity, technology life cycle, and distribution among regions and patent assignees. In the technology life cycle, the cathode materials majorly used in electric vehicle have entered maturity stage, while the lithium cobalt oxide (LCO) cathode that is widely used in portable electronics is still in the growth stage. In global patent distributions, China holds more than 50% of total patents. In the top 10 patent assignees of 6 cathode materials, 2 institutes are from China with the rest being Japan (6) and Republic of Korea (2), indicating that the technology of cathode materials in China is relatively scattered while cathode research is highly concentrated in Japan and Republic of Korea. Moreover, the patent distribution has to consider practical issues as well as the impacts of core patents. For example, the high cost discourages the intention of applying international patents. This paper is expected to stimulate battery research, understand technical layout of various countries, and probably forecast innovative technology breakthroughs.

关键词: patent analysis     cathode     batteries     technology life cycle    

Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems

《能源前沿(英文)》 2023年 第17卷 第3期   页码 320-323 doi: 10.1007/s11708-023-0889-1

摘要: Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems

关键词: materials systems    

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1058-1070 doi: 10.1007/s11709-021-0747-3

摘要: This study reports on the effects of multilayer graphene oxide (MGO) on compressive strength, flexural strength, and microstructure of cement mortar. The cement mortar was prepared with type P. II. 52.5 Portland cement, standard sand, and MGO. Four mixes were prepared with inclusion of MGO (0%, 0.02%, 0.04%, and 0.06% by weight of cement). The testing result shows that the compressive of GO-cement mortar increased by 4.84%–13.42%, and the flexural strength increased by 4.37%–8.28% at 3 d. GO-cement mortar’s compressive strength and flexural strength at 7 d increased by 3.84%–12.08% and 2.54%–13.43%, respectively. MGO made little contribution to the increases of compressive strength and flexural strength of cement mortar at 28 d. The results of X-ray diffraction (XRD), scanning electron microscope (SEM), and nitrogen (N2) adsorption/desorption tests show that the types of hydration products and crystal grain size did not change after adding MGO. Still, it can help to improve the microstructure of the cement mortar via regulating hydration products and can provide more condensed cores to accelerate hydration. Furthermore, the regulating action of MGO for the microstructure of cement mortar at an early age was better than that at 28 d.

关键词: graphene oxide     cement     mortar     mechanical properties     microstructure    

标题 作者 时间 类型 操作

Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals

Zhiyong Wang, Yuan Pu, Dan Wang, Jie-Xin Wang, Jian-Feng Chen

期刊论文

Newly-modeled graphene-based ternary nanocomposite for the magnetophotocatalytic reduction of CO2 with

期刊论文

硅基石墨烯调制器

Hao-wen SHU, Ming JIN, Yuan-sheng TAO, Xing-jun WANG

期刊论文

Carbon-based materials for photodynamic therapy: A mini-review

Di Lu, Ran Tao, Zheng Wang

期刊论文

Effect of graphene and its derivatives on thermo-mechanical properties of phase change materials and

期刊论文

Multi-effect anthraquinone-based polyimide enclosed SnO/reduced graphene oxide composite as high-performance

期刊论文

Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor

期刊论文

Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode

Krishnaveni Kalaiappan, Subadevi Rengapillai, Sivakumar Marimuthu, Raja Murugan, Premkumar Thiru

期刊论文

growth of NiSe nanocrystalline array on graphene for efficient hydrogen evolution reaction

Shuai JI, Changgan LAI, Huan ZHOU, Helin WANG, Ling MA, Cong WANG, Keying ZHANG, Fajun LI, Lixu LEI

期刊论文

Role of oxygen vacancy inducer for graphene in graphene-containing anodes

期刊论文

Microbial self-healing of cracks in cement-based materials and its influencing factors

期刊论文

Ammonia adsorption on graphene and graphene oxide: a first-principles study

Yue PENG, Junhua LI

期刊论文

Mapping the trends and prospects of battery cathode materials based on patent landscape

期刊论文

Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems

期刊论文

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

期刊论文